
Reaction Time Game
Level 3 – Python At Play

Content created by Grace Bennett, Teri Dawkins and Natasha Parbhakar

Introduction
A Raspberry Pi Quick Reaction Game

Quick reflexes can be very useful! Jobs such as
goalkeepers or racecar drivers will routinely test and
practice their reaction speeds.

Task
Quick Reaction Game

In this project, you will build a quick reaction time
game that you can play against friends and
family.

Process
Quick Reaction Game

• Learn how to wire a simple circuit.
• Write a programme to control the

circuit.
• How to use variables to store

information.
• How to get user information like a

player’s name and use it in the game.

What you will need

A Quick Reaction Game

• A Raspberry Pi
• A breadboard
• 1 LED

• 1 330 Ohm Resistor

• 4 Male-to-female jumper wires

• 2 Male-to-male jumper wires

• 2 Tactile push buttons

GPIO Pins

Each Raspberry Pi has a unique GPIO pinout, so
before you wire up your components, find the

appropriate pinout for your Raspberry Pi.

GPIO Pins are general-purpose input/output pins
that allow us to interact with electronic

components outside of our Raspberry Pi.

You can find these in the Raspberry Pi
Documentation.

On the right is a pinout for the Raspberry Pi 4.

https://www.raspberrypi.com/documentation/computers/
https://www.raspberrypi.com/documentation/computers/

Step 1
Building the circuit

Take a tactile button and push it into the
holes on your breadboard, with one set of
legs in row H and one set of legs in row J.

Repeat this, but put the second button on
the opposite end of the same row.

Step 2
Building the circuit

Place an LED with the longer leg in D16
and the shorter leg in D15. Note that the
numbering may vary depending on your
breadboard, so make sure that you check

the diagram below.

Next, push one leg of the resistor into the
same column (15) and put the other leg

into a hole along the blue strip.

Step 3
Building the circuit

Now we need to add the jumper wires.
Take 2 male-to-male jumper wires. Place

one end in a hole next to the outside leg of
the left-hand button, placing the other end

in a hole along the blue strip.

Repeat this step with the right-hand
button.

Step 4
Building the circuit

Then with a male-to-female wire, connect
GPIO14 to a hole on the breadboard in line
with the other leg of the left-hand button.

Repeat this step with the right-hand
button, only this time connecting it to

GPIO 15

Step 5
Building the circuit

Using another male-to-female jumper wire,
connect GPIO 4 to a hole on the

breadboard in line with the long leg of the
LED.

Finally, connect a GND GPIO pin to the
blue strip on the breadboard with the

remaining male-to-female jumper wire.

Step 6
Controlling the light

If you haven’t already, load up your
Raspberry Pi. Open up a python IDE such

as Mu.

Click on the Menu > Programming > Mu

Create a new file and save it as reaction.py
by clicking on File > Save As

Step 7
Controlling the light

First, import the modules and libraries
needed to control the GPIO pins on the

Raspberry Pi.

As you are outputting to an LED, we need
to set up the pin that the LED connect to

on the Raspberry Pi.

Use a variable to name the pin and then
set the output.

Step 8
Controlling the light

Next, add a few lines that will turn the LED on, wait
for 5 seconds, then turn the LED off

Finally, test that it works
by clicking Run

Step 9
Adding an element of surprise

Underneath from time import sleep, add a line to import uniform.

Here, uniform allows for the random selection of a decimal number from a range
of numbers

Step 10
Adding an element of surprise

Then locate the line sleep(5) and amend it so that it reads:

Save your work by clicking Save. Test that everything works by clicking Run.

Step 11
Detecting the buttons

The LED is working now, but we want to add functionality to our program so that when a
button is pressed, it is detected. This way, we can record the player’s score and see who wins.

Add the following variables underneath led = LED(4)

Step 12
Detecting the buttons

Underneath led.off() we can add a function that will be called whenever a button is pressed,
which will tell you which pin the button was on.

Step 13
Detecting the buttons

Finally, add this code.

 If the right_button is pressed, you can
send the string ‘right’ to the pressed

function

. If the left_button is pressed, then you
can send the string ‘left’.

Save your programme and test it with a
friend!

Step 14
Get player names

Wouldn’t it be better if the programme told you who won instead of which button was pressed? For this, we can
find out the user’s names using input() statements.

Underneath the imported libraries and modules add the
following input statements to your code.

Step 15
Get player names

Now rewrite your pressed function, so that it can print out the name of the player who won.

What next?
Ways you could improve your game

• Can you put the game into a loop, so that the
game repeats?

• Can you add scores for both players that
accumulate over a number of rounds and displays
the players’ total scores?

• How about adding in a time, to work out how long
it took the players to press the button after the LED
turned off?

Conclusion
Learning outcomes

✔ Learn how to wire a simple circuit.
✔ Write a programme to control the circuit.
✔ How to use variables to store information.
✔ How to get user information like a player’s

name and use it in the game.

Congratulations!
You have completed the project

